Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(1): e2305469, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37867230

RESUMO

Nanotransfer printing of colloidal nanoparticles is a promising technique for the fabrication of functional materials and devices. However, patterning nonplanar nanostructures pose a challenge due to weak adhesion from the extremely small nanostructure-substrate contact area. Here, the study proposes a thermal-assisted nonplanar nanostructure transfer printing (NP-NTP) strategy for multiscale patterning of polystyrene (PS) nanospheres. The printing efficiency is significantly improved from ≈3.1% at low temperatures to ≈97.2% under the glass transition temperature of PS. Additionally, the arrangement of PS nanospheres transitioned from disorder to long-range order. The mechanism of printing efficiency enhancement is the drastic drop of Young's modulus of nanospheres, giving rise to an increased contact area, self-adhesive effect, and inter-particle necking. To demonstrate the versatility of the NP-NTP strategy, it is combined with the intaglio transfer printing technique, and multiple patterns are created at both micro and macro scales at a 4-inch scale with a resolution of ≈2757 pixels per inch (PPI). Furthermore, a multi-modal anti-counterfeiting concept based on structural patterns at hierarchical length scales is proposed, providing a new paradigm of imparting multiscale nanostructure patterning into macroscale functional devices.

2.
Opt Express ; 30(23): 42728-42737, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366720

RESUMO

Resonant integrated optical gyroscopes (RIOGs) can integrate discrete optical components as a promising candidate for high-performance micro-optical gyroscopes. However, the current RIOG still consists of discrete elements due to the difficulty and complexity of heterogeneous integration of resonator and modulators. This paper presents on-chip integration of optical functional components including modulator, resonator, beam splitter, and coupler for the organic-polymer-based RIOG. Simple integrated optical processes such as spin coating, lithography, and etching can realize RIOG chips with low cost, size, weight, and power (CSWaP) features. Thereinto, the electro-optic modulator (EOM) fabricated by self-synthesized electro-optic (EO) polymer (side chain bonded polyurethane imide) exhibits less than 2 V half-wave voltage, which is half of the lithium niobate (LiNbO3) modulator. With respect to the resonator, a quality factor of approximately million was achieved using low-loss fluorinated polymer. In addition, the angular velocity sensing of RIOG was also investigated. By demonstrating the monolithic integration of the resonator and modulators, such an all-polymer RIOG chip prototype builds the technical foundation for the precision fully integrated optical gyroscope.

3.
Nano Lett ; 22(17): 6923-6929, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36006735

RESUMO

Excitons in two-dimensional (2D) materials have attracted the attention of the community to develop improved photoelectronic devices. Previous reports are based on direct excitation where the out-of-plane illumination projects a uniform single-mode light spot. However, because of the optical diffraction limit, the minimal spot size is a few micrometers, inhibiting the precise manipulation and control of excitons at the nanoscale level. Herein, we introduced the in-plane coherent surface plasmonic interference (SPI) field to excite and modulate excitons remotely. Compared to the out-of-plane light, a uniform in-plane SPI suggests a more compact spatial volume and an abundance of mode selections for a single or an array of device modulation. Our results not only build up a fundamental platform for operating and encoding the exciton states at the nanoscale level but also provide a new avenue toward all-optical integrated valleytronic chips for future quantum computation and information applications.

4.
Nanomaterials (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34685020

RESUMO

Nanomaterials and nanostructures provide new opportunities to achieve high-performance optical and optoelectronic devices. Three-dimensional (3D) surfaces commonly exist in those devices (such as light-trapping structures or intrinsic grains), and here, we propose requests for nanoscale control over nanostructures on 3D substrates. In this paper, a simple self-assembly strategy of nanospheres for 3D substrates is demonstrated, featuring controllable density (from sparse to close-packed) and controllable layer (from a monolayer to multi-layers). Taking the assembly of wavelength-scale SiO2 nanospheres as an example, it has been found that textured 3D substrate promotes close-packed SiO2 spheres compared to the planar substrate. Distribution density and layers of SiO2 coating can be well controlled by tuning the assembly time and repeating the assembly process. With such a versatile strategy, the enhancement effects of SiO2 coating on textured silicon solar cells were systematically examined by varying assembly conditions. It was found that the close-packed SiO2 monolayer yielded a maximum relative efficiency enhancement of 9.35%. Combining simulation and macro/micro optical measurements, we attributed the enhancement to the nanosphere-induced concentration and anti-reflection of incident light. The proposed self-assembly strategy provides a facile and cost-effective approach for engineering nanomaterials at 3D interfaces.

5.
Nanoscale ; 10(33): 15468-15484, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-29926871

RESUMO

We report a multi-step synthetic method to obtain ultrathin silver nanowires (Ag NWs) from an aqueous solution with a ∼17 nm diameter average, and where some of them decreased down to 9 nm. Carefully designed seed screening processes including LED irradiation at high temperature for a short time, and then continuous H2O2 etching, and relative growth mechanisms of high-yield five-twinned pentagonal seeds and ultrathin Ag NWs in aqueous environment are detailed. Then, a rapid and simple multiphase interfacial assembly method particularly suitable for the separation of ultrathin Ag NWs from various by-products was demonstrated with a clear mechanism explanation. Next, a unique optical interaction between light and individual AG NWs, as well as feature structures in the AG NWs film, was investigated by a micro-domain optical confocal microscope measurement in situ together with a theoretical explanation using modal transmission theory. That revealed that the haze problem of AG NWs films was not only arising from the interaction between light and individual or crossed Ag NWs but was also greatly dependent on a weak coupling effect of leaky modes supported by adjacent Ag NWs with large distances which had not been considered before. We then provided direct experimental evidence and concluded how to obtain haze-free films with 100% transparency in the whole visible range based on ultrathin Ag NWs. This breakthrough in diameter confinement and purification of Ag NWs is a highly expected step to overcome the well-focused light diffusion and absorption problems of Ag NWs-based devices applied in various fields such as flexible electronics, high-clarity displays, visible transparent heaters, photovoltaics and various optoelectronic technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...